The baculovirus/insect cell system as an alternative to Xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana.

نویسندگان

  • F Gaymard
  • M Cerutti
  • C Horeau
  • G Lemaillet
  • S Urbach
  • M Ravallec
  • G Devauchelle
  • H Sentenac
  • J B Thibaud
چکیده

Two plant (Arabidopsis thaliana) K+ transport systems, KAT1 and AKT1, have been expressed in insect cells (Sf9 cell line) using recombinant baculoviruses. Microscopic observation after immunogold staining revealed that the expressed AKT1 and KAT1 polypeptides were mainly associated with internal membranes, but that a minute fraction was targeted to the cell membrane. KAT1 was known, from earlier electrophysiological characterization in Xenopus oocytes, to be an inwardly rectifying voltage-gated channel highly selective for K+, while similar experiments had failed to characterize AKT1. Insect cells expressing KAT1 displayed an exogenous inwardly rectifying K+ conductance reminiscent of that described previously in Xenopus oocytes expressing KAT1. Under similar conditions, cells expressing AKT1 showed a disturbed cell membrane electrical stability that precluded electrophysiological analysis. Use of a baculovirus transfer vector designed so as to decrease the expression level allowed the first electrophysiological characterization of AKT1. The baculovirus system can thus be used as an alternative method when expression in Xenopus oocytes is unsuccessful for electrophysiological characterization of the ion channel of interest. The plant AKT1 protein has been shown in this way to be an inwardly rectifying voltage-gated channel highly selective for K+ ions and sensitive to cGMP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana.

K+ channels play diverse roles in mediating K+ transport and in modulating the membrane potential in higher plant cells during growth and development. Some of the diversity in K+ channel functions may arise from the regulated expression of multiple genes encoding different K+ channel polypeptides. Here we report the isolation of a novel Arabidopsis thaliana cDNA (AKT2) that is highly homologous...

متن کامل

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

A Model to Study the Phenotypic Changes of Insect Cell Transfection by Copepod Super Green Fluorescent Protein (cop-GFP) in Baculovirus Expression System

Background: Baculovirus expression system is one of the most attractive and powerful eukaryotic expression systems for the production of recombinant proteins. The presence of a biomarker is required to monitor transfection efficiency or protein expression levels in insect cells. Methods: The aim of this study was to construct a baculovirus expression vector encoding a copepod super green fluore...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

Immunization with cytomegalovirus gB protein produced by the Baculovirus Expression Vector System to elicit humoral immune response in BALB/c mice

Introduction: Due to the role of neutralizing antibodies which can prevent human cytomegalovirus (HCMV) infection, most of the efforts have been focused on  designing vaccines capable of eliciting protective humoral immunity. The aim of this study was to evaluate the antibody response of BALB/c mice to a truncated HCMV glycoprotein B produced in insect cells using Baculovirus Expression Vector ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 37  شماره 

صفحات  -

تاریخ انتشار 1996